Controversies in neuroimmunology: multiple sclerosis, vaccination, SARS-CoV-2 and other dilemas

Saúl Reyes-Niño , Jaime Eduardo Rodríguez-Orozco, Habib Georges Moutran-Barroso, Hellen Kreinter-Rosembaun , Mariana Gaviria-Carrillo , Vanessa Salej-Durán , Julián Mancera-Charry , Ana Claudia Villegas , David Cuellar-Giraldo , Juan Sebastián Torres-Sandoval , Ángela Gómez-Mazuera, Aristides Duque-Samper, Jaime Toro-Gómez , .

Keywords: Multiple sclerosis, Guillain-Barré syndrome, coronavirus, polyradiculoneuropathy, chronic inflammatory demyelinating, sarcoidosis, vaccines, natalizumab

Abstract

Neuroimmunology is a discipline that increasingly broadens its horizons in the understanding of neurological diseases. At the same time, and in front of the pathophysiological links of neurological diseases and immunology, specific diagnostic and therapeutic approaches have been proposed. Despite the important advances in this discipline, there are multiple dilemmas that concern and filter into clinical practice.
This article presents 15 controversies and a discussion about them, which are built with the most up-to-date evidence available. The topics included in this review are: steroid decline in relapses of multiple sclerosis; therapeutic recommendations in MS in light of the SARS-CoV-2 pandemic; evidence of vaccination in multiple sclerosis and other demyelinating diseases; overview current situation of isolated clinical and radiological syndrome; therapeutic failure in multiple sclerosis, as well as criteria for suspension of disease-modifying therapies; evidence of the management of mild relapses in multiple sclerosis; recommendations for prophylaxis against Strongyloides stercolaris; usefulness of a second course of immunoglobulin in the Guillain-Barré syndrome; criteria to differentiate an acute-onset inflammatory demyelinating chronic polyneuropathy versus Guillain-Barré syndrome; and, the utility of angiotensin-converting enzyme in neurosarcoidosis. In each of the controversies, the general problem is presented, and specific recommendations are offered that can be adopted in daily clinical practice.

Downloads

Download data is not yet available.
  • Saúl Reyes-Niño Departamento de Neurología, Fundación Santa Fe de Bogotá, Bogotá, D.C., Colombia
  • Jaime Eduardo Rodríguez-Orozco Programa de Residente en Neurología Clínica, Universidad El Bosque, Bogotá, D.C., Colombia
  • Habib Georges Moutran-Barroso Programa de Residente en Neurología Clínica, Universidad El Bosque, Bogotá, D.C., Colombia
  • Hellen Kreinter-Rosembaun Programa de Residente en Neurología Clínica, Universidad El Bosque, Bogotá, D.C., Colombia
  • Mariana Gaviria-Carrillo Grupo NeURos, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, D.C., Colombia
  • Vanessa Salej-Durán Programa de Residente en Neurología Clínica, Universidad El Bosque, Bogotá, D.C., Colombia
  • Julián Mancera-Charry Programa de Residente en Neurología Clínica, Universidad El Bosque, Bogotá, D.C., Colombia
  • Ana Claudia Villegas Programa de Residente en Neurología Clínica, Universidad El Bosque, Bogotá, D.C., Colombia
  • David Cuellar-Giraldo Programa de Residente en Neurología Clínica, Universidad El Bosque, Bogotá, D.C., Colombia
  • Juan Sebastián Torres-Sandoval Programa de Residente en Neurología Clínica, Universidad El Bosque, Bogotá, D.C., Colombia
  • Ángela Gómez-Mazuera Departamento de Neurología, Fundación Santa Fe de Bogotá, Bogotá, D.C., Colombia
  • Aristides Duque-Samper Departamento de Neurología, Fundación Santa Fe de Bogotá, Bogotá, D.C., Colombia
  • Jaime Toro-Gómez Departamento de Neurología, Fundación Santa Fe de Bogotá, Bogotá, D.C., Colombia

References

Optic Neuritis Treatment Trial Headquarters, University of South Florida College of Medicine. The clinical profile of optic neuritis. Arch Ophthalmol. 1991;109. https://doi.org/10.1001/archopht.1991.01080120057025

Perumal JS, Caon C, Hreha S, Zabad R, Tselis A, Lisak R, et al. Oral prednisone taper following intravenous steroids fails to improve disability or recovery from relapses in multiple sclerosis. Eur J Neurol. 2008;15:677. https://doi.org/10.1111/j.1468-1331.2008.02146.x

Lević Z, Micić D, Nikolić J, Stojisavljević N, Sokić D, Janković S, et al. Short-term high dose steroid therapy does not affect the hypothalamic-pituitary-adrenal axis in relapsing multiple sclerosis patients. Clinical assessment by the insulin tolerance test. J Endocrinol Invest. 1996;19:30-4. https://doi.org/10.1007/BF03347855

Sormani MP, De Rossi N, Schiavetti I, Carmisciano L, Cordioli C, Moiola L, et al. Disease modifying therapies and COVID-19 severity in multiple sclerosis. Ann Neurol. 2021;89:780-9. https://doi.org/10.1002/ana.26028

Louapre C, Collongues N, Stankoff B, Giannesini C, Papeix C, Bensa C, et al. Clinical characteristics and outcomes in patients with coronavirus disease 2019 and multiple sclerosis. JAMA Neurol. 2020;77:1079-88. https://doi.org/10.1001/jamaneurol.2020.2581

Peeters LM, Parciak T, Walton C, Geys L, Moreau Y, De Brouwer E, et al. COVID-19 in people with multiple sclerosis: A global data sharing initiative. Mult Scler J. 2020;26:1157-62. https://doi.org/10.1177/1352458520941485

Reyes S, Cunningham AL, Kalincik T, Havrdová EK, Isobe N, Pakpoor J, et al. Update on the management of multiple sclerosis during the COVID-19 pandemic and post pandemic: An international consensus statement. J Neuroimmunol. 2021;357:577627. https://doi.org/10.1016/j.jneuroim.2021.577627

Reyes S, Ramsay M, Ladhani S, Amirthalingam G, Singh N, Cores C, et al. Protecting people with multiple sclerosis through vaccination. Pract Neurol. 2020;20:435-45. https://doi.org/10.1136/practneurol-2020-002527

Ciotti JR, Valtcheva MV, Cross AH. Effects of MS disease-modifying therapies on responses to vaccinations: A review. Mult Scler Relat Disord. 2020;4:102439. https://doi.org/10.1016/j.msard.2020.102439

Bar-Or A, Freedman MS, Kremenchutzky M, Menguy-Vacheron F, Bauer D, Jodl S, et al. Teriflunomide effect on immune response to influenza vaccine in patients with multiple sclerosis. Neurology. 2013;81:552-8. https://doi.org/10.1212/WNL.0b013e31829e6fbf

Bar-Or A, Wiendl H, Miller B, Benamor M, Truffinet P, Church M, et al. Randomized study of teriflunomide effects on immune responses to neoantigen and recall antigens. Neurol Neuroimmunol Neuroinflamm. 2015;2 e70. https://doi.org/10.1212/NXI.0000000000000070

von Hehn C, Howard J, Liu S, Meka V, Pultz J, Mehta D, et al. Immune response to vaccines is maintained in patients treated with dimethyl fumarate. Neurol Neuroimmunol Neuroinflamm. 2018;5:e409. https://doi.org/10.1212/NXI.0000000000000409

Kappos L, Mehling M, Arroyo R, Izquierdo G, Selmaj K, Curovic-Perisic V, et al. Randomized trial of vaccination in fingolimod-treated patients with multiple sclerosis. Neurology. 2015;84:872-9. https://doi.org/10.1212/WNL.0000000000001302

Ufer M, Shakeri-Nejad K, Gardin A, Su Z, Paule I, Marbury TC, et al. Impact of siponimod on vaccination response in a randomized, placebo-controlled study. Neurol Neuroimmunol Neuroinflamm. 2017;4:e398. https://doi.org/10.1212/NXI.0000000000000398

Bar-Or A, Calkwood JC, Chognot C, Evershed J, Fox EJ, Herman A, et al. Effect of ocrelizumab on vaccine responses in patients with multiple sclerosis. Neurology. 2020;95:e1999-e2008. https://doi.org/10.1212/WNL.0000000000010380

McCarthy CL, Tuohy O, Compston DAS, Kumararatne DS, Coles AJ, Jones JL. Immune competence after alemtuzumab treatment of multiple sclerosis. Neurology. 2013;81:872-6. https://doi.org/10.1212/WNL.0b013e3182a35215

Achiron A, Mandel M, Dreyer-Alster S, Harari G, Magalashvili D, Sonis P, et al. Humoral immune response to COVID-19 mRNA vaccine in patients with multiple sclerosis treated with high-efficacy disease-modifying therapies. Ther Adv Neurol Disord. 2021;14:17562864211012835. https://doi.org/10.1177/17562864211012835

Cordonnier C, Einarsdottir S, Cesaro S, Di Blasi R, Mikulska M, Rieger C, et al. Vaccination of haemopoietic stem cell transplant recipients: Guidelines of the 2017 European Conference on Infections in Leukaemia (ECIL 7). Lancet Infect Dis. 2019;19:e200-e12. https://doi.org/10.1016/S1473-3099(18)30600-5

Prosperini L, Mancinelli C, Haggiag S, Cordioli C, De Giglio L, De Rossi N, et al. Minimal evidence of disease activity (MEDA) in relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry. 2020;91:271-7. https://doi.org/10.1136/jnnp-2019-322348

Cristiano E, Alonso R, Alvez Pinheiro A, Bacile EA, Balbuena ME, Ballario C, et al. Argentinean recommendations on the identification of treatment failure in relapsing remitting multiple sclerosis patients. J Neurol Sci. 2018;385:217-24. https://doi.org/10.1016/j.jns.2018.01.004

Tsantes E, Curti E, Collura F, Bazzurri V, Fiore A, Granella F. Five- and seven-year prognostic value of new effectiveness measures (NEDA, MEDA and six-month delayed NEDA) in relapsing-remitting multiple sclerosis. J Neurol Sci. 2020;414:116827. https://doi.org/10.1016/j.jns.2020.116827

Roos I, Leray E, Frascoli F, Casey R, Brown JWL, Horakova D, et al. Delay from treatment start to full effect of immunotherapies for multiple sclerosis. Brain. 2020;143:2742-56. https://doi.org/10.1093/brain/awaa231

Giovannoni G, Turner B, Gnanapavan S, Offiah C, Schmierer K, Marta M. Is it time to target no evident disease activity (NEDA) in multiple sclerosis? Mult Scler Relat Disord. 2015;4:329-33. https://doi.org/10.1016/j.msard.2015.04.006

De Stefano N, Giorgio A, Tintoré M, Pia Amato M, Kappos L, Palace J, et al. Radiologically isolated syndrome or subclinical multiple sclerosis: MAGNIMS consensus recommendations. Mult Scler J. 2018;24:214-21. https://doi.org/10.1177/1352458517717808

Okuda DT, Siva A, Kantarci O, Inglese M, Katz I, Tutuncu M, et al. Radiologically isolated syndrome: 5-year risk for an initial clinical event. PLoS ONE. 2014;9. https://doi.org/10.1371/journal.pone.0090509

Lebrun-Frenay C, Kantarci O, Siva A, Sormani MP, Pelletier D, Okuda DT, et al. Radiologically isolated syndrome: 10-year risk estimate of a clinical event. Ann Neurol. 2020;88 407-17. https://doi.org/10.1002/ana.25799

Grzegorski T, Losy J. What do we currently know about the clinically isolated syndrome suggestive of multiple sclerosis? An update. Rev Neurosci. 2020;31:335-49. https://doi.org/10.1515/revneuro-2019-0084

Galetta SL. The Controlled High Risk Avonex® Multiple Sclerosis trial (CHAMPS STUDY). J Neuroophthalmol. 2001;21:292-5. https://doi.org/10.1097/00041327-200112000-00013

Comi G, Filippi M, Barkhof F, Durelli L, Edan G, Fernández O, et al. Effect of early interferon treatment on conversion to definite multiple sclerosis: A randomised study. Lancet. 2001;357:1576-82. https://doi.org/10.1016/s0140-6736(00)04725-5

Kappos L, Polman CH, Freedman MS, Edan G, Hartung HP, Miller DH, et al. Treatment with interferon beta-1b delays conversion to clinically definite and McDonald MS in patients with clinically isolated syndromes. Neurology. 2006;67:1242-9. https://doi.org/10.1212/01.wnl.0000237641.33768.8d

Comi G, Martinelli V, Rodegher M, Moiola L, Bajenaru O, Carra A, et al. Effect of glatiramer acetate on conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome (PreCISe study): A randomised, double-blind, placebo-controlled trial. Lancet. 2009;374:1503-11. https://doi.org/10.1016/S0140-6736(09)61259-9

Comi G, De Stefano N, Freedman MS, Barkhof F, Polman CH, Uitdehaag BM, et al. Comparison of two dosing frequencies of subcutaneous interferon beta-1a in patients with a first clinical demyelinating event suggestive of multiple sclerosis (REFLEX): A phase 3 randomised controlled trial. Lancet Neurol. 2012;11:33-41.

https://doi.org/10.1016/S1474-4422(11)70262-9

Leist TP, Comi G, Cree BAC, Coyle PK, Freedman MS, Hartung H-P, et al. Effect of oral cladribine on time to conversion to clinically definite multiple sclerosis in patients with a first demyelinating event (ORACLE MS): A phase 3 randomised trial. Lancet Neurol. 2014;13:257-67. https://doi.org/10.1016/S1474-4422(14)70005-5

Miller AE, Wolinsky JS, Kappos L, Comi G, Freedman MS, Olsson TP, et al. Oral teriflunomide for patients with a first clinical episode suggestive of multiple sclerosis (TOPIC): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13:977-86. https://doi.org/10.1016/S1474-4422(14)70191-7

Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354:899-910. https://doi.org/10.1056/NEJMoa044397

Rudick RA, Stuart WH, Calabresi PA, Confavreux C, Galetta SL, Radue E-W, et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med. 2006;354:911-23. https://doi.org/10.1056/NEJMoa044396

Berger JR, Fox RJ. Reassessing the risk of natalizumab-associated PML. J Neurovirol. 2016;22:533-5. https://doi.org/10.1007/s13365-016-0427-6

Major EO, Nath A. A link between long-term natalizumab dosing in MS and PML. Neurol Neuroimmunol Neuroinflamm. 2016;3:e235. https://doi.org/10.1212/NXI.0000000000000235

Bomprezzi R, Pawate S. Extended interval dosing of natalizumab: A two-center, 7-year experience. Ther Adv Neurol Disord. 2014;7:227-31. https://doi.org/10.1177/1756285614540224

Petržalka M, Meluzínová E, Mojžišová H, Libertínová J, Ročková P, Němá E, et al. Effectiveness of natalizumab extended interval dosing in multiple sclerosis patients. Česká a Slov Neurol a Neurochir. 2020;83/116. https://doi.org/10.14735/amcsnn202079

Zhovtis Ryerson L, Frohman TC, Foley J, Kister I, Weinstock-Guttman B, Tornatore C, et al. Extended interval dosing of natalizumab in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2016;87:885-9. https://doi.org/10.1136/jnnp-2015-312940

Ryerson LZ, Foley J, Chang I, Kister I, Cutter G, Metzger RR, et al. Risk of natalizumabassociated PML in patients with MS is reduced with extended interval dosing. Neurology. 2019:93:e1452-e62. https://doi.org/10.1212/WNL.0000000000008243

Biogen. A study to evaluate efficacy, safety, and tolerability of EID of natalizumab (BG00002) in participants with RRMS switching from treatment with natalizumab SID in relation to continued SID treatment- followed by extension study comprising SC and IV natalizumab administration. 2020. Report No.: NCT03689972. https://clinicaltrials.gov/ct2/show/NCT03689972

Freedman MS, Patry DG, Grand’Maison F, Myles ML, Paty DW, Selchen DH. Treatment optimization in multiple sclerosis. Can J Neurol Sci. 2004;31:157-68. https://doi.org/10.1017/s0317167100053804

Kalincik T, Buzzard K, Jokubaitis V, Trojano M, Duquette P, Izquierdo G, et al. Risk of relapse phenotype recurrence in multiple sclerosis. Mult Scler J. 2014;20:1511-22. https://doi.org/10.1177/1352458514528762

Hirst C, Ingram G, Pearson O, Pickersgill T, Scolding N, Robertson N. Contribution of relapses to disability in multiple sclerosis. J Neurol. 2008;255:280-7. https://doi.org/10.1007/s00415-008-0743-8

Kalincik T. Multiple sclerosis relapses: Epidemiology, outcomes and management. A systematic review. Neuroepidemiology. 2015;44:199-214. https://doi.org/10.1159/000382130

Citterio A, La Mantia L, Ciucci G, Candelise L, Brusaferri F, Midgard R, et al. Corticosteroids or ACTH for acute exacerbations in multiple sclerosis. Cochrane Database Syst Rev. 2000;4:CD001331. https://doi.org/10.1002/14651858.CD001331

Richert ND, Ostuni JL, Bash CN, Leist TP, McFarland HF, Frank JA. Interferon beta-1b and intravenous methylprednisolone promote lesion recovery in multiple sclerosis. Mult Scler J. 2001;7:49-58. https://doi.org/10.1177/135245850100700109

Amaya-Nieto J, Girón-Luque F, Baez-Suárez Y. Strongyloides stercoralis; reporte de un caso en el post-trasplante renal. Rev Med. 2017;25:64-69. https://doi.org/10.18359/rmed.2921

Greaves D, Coggle S, Pollard C, Aliyu SH, Moore EM. Strongyloides stercoralis infection. BMJ. 2013;347:f4610. https://doi.org/10.1136/bmj.f4610

Keiser PB, Nutman TB. Strongyloides stercoralis in the immunocompromised population. Clin Microbiol Rev. 2004;17:208-17. https://doi.org/10.1128/CMR.17.1.208-217.2004

Ghosh K, Ghosh K. Strongyloides stercoralis septicaemia following steroid therapy for eosinophilia: Report of three cases. Trans R Soc Trop Med Hyg. 2007;101:1163-5. https://doi.org/10.1016/j.trstmh.2007.05.021

Mejia R, Nutman TB. Screening, prevention, and treatment for hyperinfection syndrome and disseminated infections caused by Strongyloides stercoralis. Curr Opin Infect Dis. 2012;25:458-63. https://doi.org/10.1097/QCO.0b013e3283551dbd

Miravalle AA, Schreiner T. Neurologic complications of vaccinations. En: Biller J, Ferro JM. Handbook of Clinical Neurology. Neurologic aspects of systemic disease. Part III. 2014. p. 1549-57. https://doi.org/10.1016/B978-0-7020-4088-7.00103-6

Schonberger LB, Bregman DJ, Sullivan-Bolyai JZ, Keelyside RA, Ziegler DW, Retailliau HF, et al. Guillain-Barré syndrome following vaccination in the National Influenza Immunization Program, United States, 1976-1977. Am J Epidemiol. 1979;110:105-23. https://doi.org/10.1093/oxfordjournals.aje.a112795

Stowe J, Andrews N, Miller E. Do vaccines trigger neurological diseases? Epidemiological evaluation of vaccination and neurological diseases using examples of multiple sclerosis, Guillain-Barré syndrome and narcolepsy. CNS Drugs. 2020;34:1-8. https://doi.org/10.1007/s40263-019-00670-y

Karussis D, Petrou P. The spectrum of post-vaccination inflammatory CNS demyelinating syndromes. Autoimmun Rev. 2014;13:215-24. https://doi.org/10.1016/j.autrev.2013.10.003

Torisu H, Okada K. Vaccination-associated acute disseminated encephalomyelitis. Vaccine. 2019;37:1126-9. https://doi.org/10.1016/j.vaccine.2019.01.021

Wildemann B, Jarius S, Hartmann M, Regula JU, Hametner C. Acute disseminated encephalomyelitis following vaccination against human papilloma virus. Neurology. 2009;72:2132-3. https://doi.org/10.1212/WNL.0b013e3181aa53bb

Scheller NM, Svanström H, Pasternak B, Arnheim-Dahlström L, Sundström K, Fink K, et al. Quadrivalent HPV vaccination and risk of multiple sclerosis and other demyelinating diseases of the central nervous system. JAMA. 2015;313:54-61. https://doi.org/10.1001/jama.2014.16946

Jakimovski D, Weinstock-Guttman B, Ramanathan M, Dwyer MG, Zivadinov R. Infections, vaccines and autoimmunity: A multiple sclerosis perspective. Vaccines. 2020;8:50. https://doi.org/10.3390/vaccines8010050

Farez MF. Yellow fever vaccination and increased relapse rate in travelers with multiple sclerosis. Arch Neurol. 2011;68. https://doi.org/10.1001/archneurol.2011.131

Huttner A, Eperon G, Lascano AM, Roth S, Schwob JM, Siegrist CA, et al. Risk of MS relapse after yellow fever vaccination. Neurol Neuroimmunol Neuroinflamma. 2020;7:e726. https://doi.org/10.1212/NXI.0000000000000726

Raffel J, Wakerley B, Nicholas R. Multiple sclerosis. Medicina (Buenos Aires). 2016;44:537-41. https://doi.org/10.1016/j.mpmed.2016.06.005

Gross RH, Corboy JR. Monitoring, switching, and stopping multiple sclerosis diseasemodifying therapies. Contin Lifelong Learn Neurol. 2019;25:715-35. https://doi.org/10.1212/CON.0000000000000738

Reich DS, Lucchinetti CF, Calabresi PA. Multiple Sclerosis. N Engl J Med. 2018;378:169-80. https://doi.org/10.1056/NEJMra1401483

Weideman AM, Tapia-Maltos MA, Johnson K, Greenwood M, Bielekova B. Meta-analysis of the age-dependent efficacy of multiple sclerosis treatments. Front Neurol. 2017;8:577. https://doi.org/10.3389/fneur.2017.00577

Corboy J. Discontinuation of disease modifying therapies (DMTs) in multiple sclerosis (MS) (DISCOMS). (NCT03073603). 2021. Accessed: 1° de mayo de 2021. Avalailable in: https://clinicaltrials.gov/ct2/show/NCT03073603

Willison HJ, Jacobs BC, van Doorn PA. Guillain-Barré syndrome. Lancet. 2016;388:717-27. https://doi.org/10.1016/S0140-6736(16)00339-1

Farcas P, Avnun L, Frisher S, Herishanu Y, Wirguin I. Efficacy of repeated intravenous immunoglobulin in severe unresponsive Guillain-Barré syndrome. Lancet. 1997;350:1747. https://doi.org/10.1016/s0140-6736(97)24050-x

Verboon C, Doets AY, Galassi G, Davidson A, Waheed W, Péréon Y, et al. Current treatment practice of Guillain-Barré syndrome. Neurology. 2019;93:e59-e76. https://doi.org/10.1212/WNL.0000000000007719

Walgaard C, Jacobs BC, Lingsma HF, Steyerberg EW, Cornblath DR, van Doorn PA, et al. Second IVIg course in Guillain-Barré syndrome patients with poor prognosis (SID-GBS trial): Protocol for a double-blind randomized, placebo-controlled clinical trial. J Peripher Nerv Syst. 2018;23:210-5. https://doi.org/10.1111/jns.12286

van Doorn PA, Kuitwaard K, Walgaard C, van Koningsveld R, Ruts L, Jacobs BC. IVIG treatment and prognosis in Guillain-Barré syndrome. J Clin Immunol. 2010;30(Suppl.1):S74-8. https://doi.org/10.1007/s10875-010-9407-4

Hughes RAC, Swan AV, Raphael JC, Annane D, van Koningsveld R, van Doorn PA. Immunotherapy for Guillain-Barre syndrome: A systematic review. Brain. 2007;130:2245-57. https://doi.org/10.1093/brain/awm004

Dionne A, Nicolle MW, Hahn AF. Clinical and electrophysiological parameters distinguishing acute-onset chronic inflammatory demyelinating polyneuropathy from acute inflammatory demyelinating polyneuropathy. Muscle Nerve. 2010;41:202-7. https://doi.org/10.1002/mus.21480

Alessandro L, Pastor-Rueda JM, Wilken M, Querol L, Marrodán M, Acosta JN, et al. Differences between acute-onset chronic inflammatory demyelinating polyneuropathy and acute inflammatory demyelinating polyneuropathy in adult patients. J Peripher Nerv Syst. 2018;23:154-8. https://doi.org/10.1111/jns.12266

Ruts L, van Koningsveld R, van Doorn PA. Distinguishing acute-onset CIDP from GuillainBarré syndrome with treatment related fluctuations. Neurology. 2005;65:138-40. https://doi.org/10.1212/01.wnl.0000167549.09664.b8

Chen ES, Moller DR. Sarcoidosis—scientific progress and clinical challenges. Nat Rev Rheumatol. 2011;7:457-67. https://doi.org/10.1038/nrrheum.2011.93

Kraaijvanger R, Janssen Bonás M, Vorselaars ADM, Veltkamp M. Biomarkers in the diagnosis and prognosis of sarcoidosis: Current use and future prospects. Front Immunol. 2020;11:1443. https://doi.org/10.3389/fimmu.2020.01443

Oksanen V, Fyhrquist F, Somer H, Gronhagen-Riska C. Angiotensin converting enzyme in cerebrospinal fluid: A new assay. Neurology. 1985;35:1220-3. https://doi.org/10.1212/wnl.35.8.1220

Dale JC, O’Brien JF. Determination of angiotensin-converting enzyme levels in cerebrospinal fluid is not a useful test for the diagnosis of neurosarcoidosis. Mayo Clin Proc. 1999;74:535. https://doi.org/10.4065/74.5.535

Tahmoush AJ, Amir MS, Connor WW, Farry JK, Didato S, Ulhoa-Cintra A, et al. CSF-ACE activity in probable CNS neurosarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2002;19:191-7.

Khoury J, Wellik KE, Demaerschalk BM, Wingerchuk DM. Cerebrospinal fluid angiotensinconverting enzyme for diagnosis of central nervous system sarcoidosis. Neurologist. 2009;15:108-11. https://doi.org/10.1097/NRL.0b013e31819bcf84

Bridel C, Courvoisier DS, Vuilleumier N, Lalive PH. Cerebrospinal fluid angiotensinconverting enzyme for diagnosis of neurosarcoidosis. J Neuroimmunol. 2015;285:1-3. https://doi.org/10.1016/j.jneuroim.2015.05.020

How to Cite
1.
Reyes-Niño S, Rodríguez-Orozco JE, Moutran-Barroso HG, Kreinter-Rosembaun H, Gaviria-Carrillo M, Salej-Durán V, et al. Controversies in neuroimmunology: multiple sclerosis, vaccination, SARS-CoV-2 and other dilemas. biomedica [Internet]. 2022 Oct. 31 [cited 2024 May 12];42(Sp. 2):78-99. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/6366

Some similar items:

Published
2022-10-31
Section
Topic review

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
Crossref Cited-by logo
QR Code