Inhibition of defensin A and cecropin A responses to dengue virus 1 infection in Aedes aegypti

Yda Méndez, César Pacheco, Flor Herrera, .

Keywords: Aedes aegypti, dengue virus, alpha-defensins, cecropins, Escherichia coli

Abstract

Introduction: It is essential to determine the interactions between viruses and mosquitoes to diminish dengue viral transmission. These interactions constitute a very complex system of highly regulated pathways known as the innate immune system of the mosquito, which produces antimicrobial peptides that act as effector molecules against bacterial and fungal infections. There is less information about such effects on virus infections.
Objective: To determine the expression of two antimicrobial peptide genes, defensin A and cecropin A, in Aedes aegypti mosquitoes infected with DENV-1.
Materials and methods: We used the F1 generation of mosquitoes orally infected with DENV-1 and real-time PCR analysis to determine whether the defensin A and cecropin A genes played a role in controlling DENV-1 replication in Ae. aegypti. As a reference, we conducted similar experiments with the bacteria Escherichia coli.
Results: Basal levels of defensin A and cecropin A mRNA were expressed in uninfected mosquitoes at different times post-blood feeding. The infected mosquitoes experienced reduced expression of these mRNA by at least eightfold when compared to uninfected control mosquitoes at all times post-infection. In contrast with the behavior of DENV-1, results showed that bacterial infection produced up-regulation of defensin and cecropin genes; however, the induction of transcripts occurred at later times (15 days).
Conclusion: DENV-1 virus inhibited the expression of defensin A and cecropin A genes in a wild Ae. aegypti population from Venezuela.

Downloads

Download data is not yet available.
  • Yda Méndez Instituto de Investigaciones Biomédicas “Dr. Francisco Triana Alonso”, Facultad de Ciencias de la Salud, Universidad de Carabobo, Maracay, Aragua, Venezuela https://orcid.org/0000-0001-6608-3943
  • César Pacheco Instituto de Investigaciones Biomédicas “Dr. Francisco Triana Alonso”, Facultad de Ciencias de la Salud, Universidad de Carabobo, Maracay, Aragua, Venezuela https://orcid.org/0000-0003-3145-6433
  • Flor Herrera Instituto de Investigaciones Biomédicas “Dr. Francisco Triana Alonso”, Facultad de Ciencias de la Salud, Universidad de Carabobo, Maracay, Aragua, Venezuela https://orcid.org/0000-0001-7785-6497

References

Ramos-Castañeda J, Barreto dos Santos F, Martínez-Vega R, Galvão de Araujo JM, Joint G, Sarti E. Dengue in Latin America: Systematic review of molecular epidemiological trends. PLoS Negl Trop Dis. 2017;11:e0005224. https://doi.org/10.1371/journal.pntd.0005224

Liu T, Xu Y, Wang X, Gu J, Yan G, Chen XG. Antiviral systems in vector mosquitoes. Dev Comp Immunol. 2018;83:34-43. https://doi.org/10.1016/j.dci.2017.12.025

Sim S, Jupatanakul N, Dimopoulos G. Mosquito immunity against arboviruses. Viruses. 2014;6:4479-504. https://doi.org/10.3390/v6114479

Wang Y, Chang M, Wang X, Zheng AH, Zou Z. The immune strategies of mosquito Aedes aegypti against microbial infection. Dev Comp Immunol. 2018;83:12-21. https://doi.org/10.1016/j.dci.2017.12.001

Blair C. Mosquito RNAi is the major innate immune pathway controlling arbovirus infection and transmission. Future Microbiol. 2011;6:265-77. https://doi.10.2217/fmb.11.11

Carvalho-Leandro D, Ayres C, Guedes D, Suesdek L, Melo-Santos MA, Oliveira CF. Immune transcript variations among Aedes aegypti populations with distinct susceptibility to dengue virus serotype 2. Acta Trop. 2012;124:113-9. https://doi.org/10.1016/j.actatropica.2012.07.006

Mains J, Brelsfoard C, Rose R, Dobson S. Female adult Aedes albopictus suppression by Wolbachia-infected male mosquitoes. Sci Rep. 2016 6:33846. https://doi.org/10.1038/srep33846

Xi Z, Ramírez JL, Dimopoulos G. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog. 2008;4:e1000098. https://doi.org/10.1371/journal.ppat.1000098

Sanders HR, Foy BD, Evans AM, Ross LS, Beaty BJ, Olson KE, et al. Sindbis virus induces transport processes and alters expression of innate immunity pathway genes in the midgut of the disease vector, Aedes aegypti. Insect Biochem Mol Biol. 2005;35:1293-307. https://doi.org/10.1016/j.ibmb.2005.07.006

Luplertlop N, Surasombatpattana P, Patramool S, Dumas E, Wasinpiyamongkol, Saune L, et al. Induction of a peptide with activity against a broad spectrum of pathogens in the Aedes aegypti salivary gland, following infection with dengue virus. PLoS Pathog. 2011;7:e1001252. https://doi.org/10.1371/journal.ppat.1001252

Wasinpiyamongkol L, Missé D, Luplertlop N. Induction of defensin response to dengue infection in Aedes aegypti. Entomol Science. 2015;18:199-206. https://doi.org/10.1111/ens.12108

Pompon J, Manuel M, Ng G, Wong B, Shan C, Manokaran G, et al. Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission. PLoS Pathog. 2017;13:e1006535. https://doi.org/10.1371/journal.ppat.1006535

Mellor PS. Replication of arboviruses in insect vectors. J Comp Path. 2000;123:231-47. https://doi.org/10.1053/jcpa.2000.0434

Urdaneta L, Herrera F, Pernalete M, Zoghbi N, Rubio-Palis Y, Barrios R, et al. Detection of dengue viruses in field-caught Aedes aegypti (Diptera: Culicidae) in Maracay, Aragua state, Venezuela by type-specific polymerase chain reaction. Infect Genet Evol. 2005;5:177-84 https://doi.org/10.1016/j.meegid.2004.09.004

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:2002-7. https://doi.org/10.1093/nar/29.9.e45

Fragkoudis R, Chi Y, Siu R, Barry G, Attarzadeh-Yazdi G, Merits A, et al. Semliki Forest virus strongly reduces mosquito host defense signaling. Insect Mol Biol. 2008;17:647-56. https://doi.org/10.1111/j.1365-2583.2008.00834.x

Colpitts T, Cox J, Vanlandingham D, Feitosa F, Cheng G, Kurscheid S, et al. Alterations in the Aedes aegypti transcriptome during Infection with West Nile, dengue and yellow fever viruses. PLoS Pathog. 2011;7: e1002189. https://doi.org/10.1371/journal.ppat.1002189

Chang-Hyun K, Muturi E. Effect of larval density and Sindbis virus infection on immune responses in Aedes aegypti. J Insect Physiol. 2013;59:604-10. https://doi.org/10.1016/j.jinsphys.2013.03.010

Lin C, Chou C, Hsu Y, Lien J, Wang Y, Chen S, et al. Characterization of two mosquito STATs, AaSTAT and CtSTAT. Differential regulation of tyrosine phosphorylation and DNA binding activity by lipopolysaccharide treatment and by Japanese encephalitis virus infection. J Biol Chem. 2004;279:3308-17. https://doi.org/10.1074/jbc.M309749200

Sim S, Dimopoulos G. Dengue virus inhibits immune responses in Aedes aegypti cells. PLoS One. 2010;5 e10678. https://doi.org/10.1371/journal.pone.0010678

Lambrechts L, Scott T. Mode of transmission and the evolution of arbovirus virulence in mosquito vectors. Proc R Soc B. 2009;276:1369-78. https://doi.org/10.1098/rspb.2008.1709

Cooper D, Chamberlain C, Lowenberger C. Aedes FADD: A novel death domain-containing protein required for antibacterial immunity in the yellow fever mosquito, Aedes aegypti. J Insect Biochem Mol Biol. 2009;39:47-54. https://doi.org/10.1016/j.ibmb.2008.09.011

Bartholomay L, Michel K. Mosquito Immunobiology: the intersection of vector health and vector competence. Annu Rev Entomol. 2018;63:145-67. https://doi.org/10.1146/annurev-ento-010715-023530

Lowenberger C. Innate immune response of Aedes aegypti. Insect Biochem Mol Biol. 2001;31:219-22. https://doi.org/10.1016/s0965-1748(00)00141-7

How to Cite
1.
Méndez Y, Pacheco C, Herrera F. Inhibition of defensin A and cecropin A responses to dengue virus 1 infection in Aedes aegypti. biomedica [Internet]. 2021 Mar. 19 [cited 2024 May 18];41(1):161-7. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/5491

Some similar items:

Published
2021-03-19
Section
Short communication

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code