La regulación positiva de la expresión del gen Arl4a por acción del extracto acuoso de brócoli se asocia con una mejor espermatogénesis en testículos de ratón

Omid Jazayeri, Setareh Farahmand Araghi, Tahereh A. Aghajanzadeh, Fereshteh Mir Moammadrezaei, .

Palabras clave: Brassica, espermatogénesis, expression génica, ratones, cadmio

Resumen

Introducción. El brócoli (Brassica oleracea) se conoce por sus propiedades como anticancerígeno, antioxidante y eliminador de radicales libres. Sin embargo, sus beneficios en la espermatogénesis aún no se han determinado suficientemente.
Objetivo. Estudiar los efectos del extracto acuoso de brócoli sobre los factores espermáticos y la expresión de los genes Catsper1, Catsper2, Arl4a, Sox5 y Sox9 en ratones.
Materiales y métodos. Los ratones machos se dividieron aleatoriamente en seis grupos: 1) control; 2) tratados con cadmio, 3 mg/kg de peso corporal; 3) tratados con 200 μl de extracto acuoso de brócoli (1 g ml-1); 4) tratados con 400 μl de extracto acuoso de brócoli; 5) tratados con 200 μl de extracto acuoso de brócoli más cadmio, y 6) tratados con 400 μl de extracto acuoso de brócoli más cadmio. El extracto acuoso de brócoli se administró por vía oral. Se analizaron los factores espermáticos y la expresión de los genes Catsper1, Catsper2, Arl4a, Sox5 y Sox9.
Resultados. Se observó una mejoría obvia en el recuento y una ligera mejoría en la motilidad de los espermatozoides, en ratones tratados con extracto de brócoli solo o con cadmio. La viabilidad de los espermatozoides se redujo con el extracto de brócoli, excepto con la dosis de 200 μl más cadmio, la cual la aumentó significativamente. Curiosamente, la expresión del gen Arl4a aumentó en el grupo tratado con 400 μl del extracto. Asimismo, el ARNm del Arl4a en ratones tratados con cadmio y 200 μl del extracto, fue más abundante que en los ratones tratados solo con cadmio. Además, el extracto de brócoli aumentó la cantidad de ARNm de los genes Catsper2 y Sox5 en ratones tratados con 200 y 400 μl de extracto de brócoli más cadmio, en comparación con el grupo tratado únicamente con cadmio.
Conclusión. El mayor número de espermatozoides en ratones tratados con brócoli abre el camino al desarrollo de productos farmacéuticos para hombres infértiles.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

Kumar N, Singh AK. Trends of male factor infertility, an important cause of infertility: A review of literature. J Human Reprod Sci. 2015;8:191-6. https://doi.org/10.4103/0974-1208.170370

Kim DR, Kim HY, Kim HY, Chang MS, Park SK. Trigonellae semen enhances sperm motility and the expression of the cation sperm channel proteins in mouse testes. Evid Based Complementary Altern Med. 2015 ;2015:817324. https://doi.org/10.1155/2015/817324

Park WS, Shin DY, Yang WM, Chang MS, Park SK. Korean ginseng induces spermatogenesis in rats through the activation of cAMP-responsive element modulator (CREM). Fertil Steril. 2007;88:1000-2. https://doi.org/10.1016/j.fertnstert.2006.12.014

Yang WM, Park SY, Kim HM, Park EH, Park SK, Chang MS. Effects of Panax ginseng on glial cell-derived neurotrophic factor (GDNF) expression and spermatogenesis in rats. Phytother Res. 2011;25:308-11. https://doi.org/10.1002/ptr.3239

Awoniyi DO, Aboua YG, Marnewick J, Brooks N. The effects of rooibos (Aspalathus linearis), green tea (Camellia sinensis) and commercial rooibos and green tea supplements on epididymal sperm in oxidative stress-induced rats. Phytother Res. 2012;26:1231-9. https://doi.org/10.1002/ptr.3717

Bae WJ, Ha U, Choi JB, Kim KS, Kim SJ, Cho HJ, et al. Protective effect of decursin extracted from Angelica gigas in male infertility via Nrf2/HO-1 signaling pathway. Oxid Med Cell Longev. 2016;2016:5901098. https://doi.org/10.1155/2016/5901098

Yari A, Sarveazad A, Asadi E, Raouf Sarshoori J, Babahajian A, Amini N, et al. Efficacy of Crocus sativus L. on reduction of cadmium-induced toxicity on spermatogenesis in adult rats. Andrologia. 2016;48:1244-52. https://doi.org/10.1111/and.12568

Park EH, Do Rim Kim HY, Park SK, Chang MS. Panax ginseng induces the expression of CatSper genes and sperm hyperactivation. Asian J Androl. 2014;16:845. https://doi.org/10.4103/1008-682X.129129

Sun XH, Zhu YY, Wang L, Liu HL, Ling Y, Li ZL, et al. The Catsper channel and its roles in male fertility: A systematic review. Reprod Biol Endocrinol. 2017;15:1-2. https://doi.org/10.1186/s12958-017-0281-2

Kensler TW, Egner PA, Agyeman AS, Visvanathan K, Groopman JD, Chen JG, et al. Keap1–nrf2 signaling: A target for cancer prevention by sulforaphane. Top Curr Chem. 2013;329:163-77. https://doi.org/10.1007/128_2012_339

Yang SH, Yu LH, Li L, Guo Y, Zhang Y, Long M, et al. Protective mechanism of sulforaphane on cadmium-induced sertoli cell injury in mice testis via Nrf2/ARE signaling pathway. Molecules. 2018;23:1774. https://doi.org/10.3390/molecules23071774

Fahey JW, Wehage SL, Holtzclaw WD, Kensler TW, Egner PA, Shapiro TA, et al. Protection of humans by plant glucosinolates: Efficiency of conversion of glucosinolates to isothiocyanates by the gastrointestinal microflora. Cancer Pre Res. 2012;5:603-11. https://doi.org/10.1158/1940-6207.CAPR-11-0538

López-Romero D, Izquierdo-Vega JA, Morales-González JA, Madrigal-Bujaidar E, Chamorro-Cevallos G, Sánchez-Gutiérrez M, et al. Evidence of some natural products with antigenotoxic effects. Part 2: plants, vegetables, and natural resin. Nutrients. 2018;10:1954. https://doi.org/10.3390/nu10121954

Conzatti A, da Silva Fróes FC, Perry ID, de Souza CG. Clinical and molecular evidence of the consumption of broccoli, glucoraphanin and sulforaphane in humans. Nutr Hosp. 2015;31:559-69. https://doi.org/10.3305/nh.2015.31.2.7685

Senanayake GV, Banigesh A, Wu L, Lee P, Juurlink BH. The dietary phase 2 protein inducer sulforaphane can normalize the kidney epigenome and improve blood pressure in hypertensive rats. Am J Hypertens. 2012;25:229-35. https://doi.org/10.1038/ajh.2011.200

Dinkova-Kostova AT, Kostov RV. Glucosinolates and isothiocyanates in health and disease. Trends Mol Med. 2012;18:337-47. https://doi.org/10.1016/j.molmed.2012.04.003

Kerns ML, DePianto D, Dinkova-Kostova AT, Talalay P, Coulombe PA. Reprogramming of keratin biosynthesis by sulforaphane restores skin integrity in epidermolysis bullosa simplex. Proc Natl Acad Sci. 2007;104:14460-5. https://doi.org/10.1073/pnas.0706486104

Yanaka A, Fahey JW, Fukumoto A, Nakayama M, Inoue S, Zhang S, et al. Dietary sulforaphane-rich broccoli sprouts reduce colonization and attenuate gastritis in Helicobacter pylori–infected mice and humans. Cancer Pre Res. 2009;2:353-60. https://doi.org/10.1158/1940-6207.CAPR-08-0192

Singh K, Connors SL, Macklin EA, Smith KD, Fahey JW, Talalay P, et al. Sulforaphane treatment of autism spectrum disorder (ASD). Proc Natl Acad Sci. 2014;111:15550-5. https://doi.org/10.1073/pnas.1416940111

Duruibe JO, Ogwuegbu MO, Egwurugwu JN. Heavy metal pollution and human biotoxic effects. Int J Phys Sci. 2007;2:112-8. https://doi.org/10.5897/IJPS.9000289

Mishra S, Bharagava RN, More N, Yadav A, Zainith S, Mani S, et al. Heavy metal contamination: An alarming threat to environment and human health. In: Sobti R, Arora N, Kothari R, editors. Environmental biotechnology: For sustainable future. Singapore: Springer, 2019. p. 103-25. https://doi.org/10.1007/978-981-10-7284-0_5

Schürmann A, Koling S, Jacobs S, Saftig P, Krauss S, Wennemuth G, et al. Reduced sperm count and normal fertility in male mice with targeted disruption of the ADP-ribosylation factorlike 4 (Arl4) gene. Mol Cell Biol. 2002;22:2761-8. https://doi.org/10.1128/MCB.22.8.2761-2768.2002

Pereira R, Sá R, Barros A, Sousa M. Major regulatory mechanisms involved in sperm motility. Asian J Androl. 2017;19:5. https://doi.org/10.4103/1008-682X.167716

She ZY, Yang WX. SOX family transcription factors involved in diverse cellular events during development. Eur J Cell Biol. 2015;94:547-63. https://doi.org/10.1016/j.ejcb.2015.08.002

Fahey JW, Zhang Y, Talalay P. Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci USA. 1997;94:10367-72. https://doi.org/10.1073/pnas.94.19.10367

World Health Organization. WHO laboratory manual for the examination and processing of human semen. Fifth edition. Switzerland: WHO Press; 2010. p. 286.

Mohammadi S, Movahedin M, Mowla SJ. Up-regulation of CatSper genes family by selenium. Reprod Biol Endocrinol. 2009;7:126. https://doi.org/10.1186/1477-7827-7-126

Suzuki N, Mizuniwa C, Ishii K, Nakagawa Y, Tsuji K, Muneta T, et al. Teneurin-4, a transmembrane protein, is a novel regulator that suppresses chondrogenic differentiation. J Orthop Res. 2014;32:915-22. https://doi.org/10.1002/jor.22616

Shiota M, Heike T, Haruyama M, Baba S, Tsuchiya A, Fujino H, et al. Isolation and characterization of bone marrow-derived mesenchymal progenitor cells with myogenic and neuronal properties. Exp Cell Res. 2007;313:1008-23. https://doi.org/10.1016/j.yexcr.2006.12.017

Zuberi K, Franz M, Rodriguez H, Montojo J, Lopes CT, Bader GD, et al. GeneMANIA prediction server 2013 update. Nucleic acids Res. 2013;41:W115-22. https://doi.org/10.1093/nar/gkt533

Khademi N, Raeeszadeh M, Allahveisi A. Effect of different concentrations of hydroalcoholic extract of broccoli on sperm parameters and oxidative stress factors before and after thawing in NMRI mice. J Shahid Sadoughi Univ Med Sci. 2019;26:921-33. http://dx.doi.org/10.18502/ssu.v26i10.482

Raeeszadeh M, Khademi N, Akbari A. The effects of broccoli and caraway extracts on serum oxidative markers, testicular structure and function, and sperm quality before and after sperm cryopreservation. Cryobiology. 2021;99:11-9. https://doi.org/10.1016/j.cryobiol.2021.02.003

Turner LM, Harr B. Genome-wide mapping in a house mouse hybrid zone reveals hybrid sterility loci and Dobzhansky-Muller interactions. eLife. 2014;3:e02504. https://doi.org/10.7554/eLife.02504

Zhou Y, Yang H, Li Y, Lynch B, Jia X. Broccoli seed extract: Genotoxicity and subchronic toxicity studies. Regul Toxicol Pharm. 2015;73:442-51. https://doi.org/10.1016/j.yrtph.2015.08.003

Kim J, Kwon JT, Jeong J, Kim J, Hong SH, Kim J, et al. SPATC 1L maintains the integrity of the sperm head-tail junction. EMBO Rep. 2018;19:e45991. https://doi.org/10.15252/embr.201845991

Hogarth CA, Calanni S, Jans DA, Loveland KL. Importin α mRNAs have distinct expression profiles during spermatogenesis. Dev Dyn. 2006;235:253-62. https://doi.org/10.1002/dvdy.20569

Major AT, Whiley PA, Loveland KL. Expression of nucleocytoplasmic transport machinery: Clues to regulation of spermatogenic development. Biochim Biophys Acta Mol Cell Res. 2011;1813:1668-88. https://doi.org/10.1016/j.bbamcr.2011.03.008

Han F, Liu C, Zhang L, Chen M, Zhou Y, Qin Y, et al. Globozoospermia and lack of acrosome formation in GM130-deficient mice. Cell Death Dis. 2018;8:e2532. https://doi.org/10.1038/cddis.2016.414

Hou CC, Yang WX. New insights to the ubiquitin–proteasome pathway (UPP) mechanism during spermatogenesis. Mol Biol Rep. 2013;40:3213-30. https://doi.org/10.1007/s11033-012-2397-y

Xia Y, Huang N, Chen Z, Li F, Fan G, Ma D, et al. CCDC102B functions in centrosome linker assembly and centrosome cohesion. J Cell Sci. 2018;131:jcs222901. https://doi.org/10.1242/jcs.222901

Nogales-Cadenas R, Abascal F, Díez-Pérez J, Carazo JM, Pascual-Montano A. CentrosomeDB: A human centrosomal proteins database. Nucleic acids Res. 2009;37:D175-80. https://doi.org/10.1093/nar/gkn815

Jacobs S, Schürmann A, Becker W, Böckers TM, Copeland NG, Jenkins NA, et al. The mouse ADP-ribosylation factor-like 4 gene: Two separate promoters direct specific transcription in tissues and testicular germ cell. Biochem J. 1998;335:259-65. https://doi.org/10.1042/bj3350259

Finley JW. Reduction of cancer risk by consumption of selenium-enriched plants: Enrichment of broccoli with selenium increases the anticarcinogenic properties of broccoli. J Med Food. 2003;6:19-26. https://doi.org/10.1089/109662003765184714

Finley JW, Sigrid-Keck A, Robbins RJ, Hintze KJ. Selenium enrichment of broccoli: Interactions between selenium and secondary plant compounds. J Nutr. 2005;135:1236-8. https://doi.org/10.1093/jn/135.5.1236

Qazi IH, Angel C, Yang H, Zoidis E, Pan B, Wu Z, et al. Role of selenium and selenoproteins in male reproductive function: A review of past and present evidences. Antioxidants. 2019;8:268. https://doi.org/10.3390/antiox8080268

Kheradmand N, Kamkar R, Moshajjari M, Baazm M. Effect of selenium and pentoxifylline on expression of CATSPER1 and 2 genes and FSH/LH levels in treated mice by dexamethasone. Andrologia. 2019;51:e13279. https://doi.org/10.1111/and.13279

Wang HF, Chang M, Peng TT, Yang Y, Li N, Luo T, et al. Exposure to cadmium impairs sperm functions by reducing CatSper in mice. Cell Physiol Biochem. 2017;42:44-54. https://doi.org/10.1159/000477113

Mohammadi S, Gholamin M, Mansouri A, Mahmoodian RS, Babazadeh B, Kebriaei SM, et al. Effect of cadmium and nickel on expression of CatSper 1 and 2 genes in mice. Toxin Rev. 2018;37:216-22. https://doi.org/10.1080/15569543.2017.1350192

Jiménez-Badillo SE, Oviedo N, Hernández-Guzmán C, González-Mariscal L, Hernández-Sánchez J. Catsper1 promoter is bidirectional and regulates the expression of a novel lncRNA. Sci Rep. 2017;7:1-2. https://doi.org/10.1038/s41598-017-13867-2

Mata-Rocha M, Hernández-Sánchez J, Guarneros G, de la Chesnaye E, Sánchez-Tusié AA, Treviño CL, et al. The transcription factors Sox5 and Sox9 regulate Catsper1 gene expression. FEBS Lett. 2014;588:3352-60. https://doi.org/10.1016/j.febslet.214.07.024

Liu X, Zheng J, Xue Y, Qu C, Chen J, Wang Z, et al. Inhibition of TDP43-mediated SNHG12-miR-195-SOX5 feedback loop impeded malignant biological behaviors of glioma cells. Mol Ther Nucleic Acids. 2018;10:142-58. https://doi.org/10.1016/j.omtn.2017.12.001

Koh E, Wimalasiri KM, Chassy AW, Mitchell AE. Content of ascorbic acid, quercetin, kaempferol and total phenolics in commercial broccoli. J Food Compost Anal. 2009;22:637-43. https://doi.org/10.1016/j.jfca.2009.01.019

Jia Y, Lin J, Mi Y, Zhang C. Quercetin attenuates cadmium-induced oxidative damage and apoptosis in granulosa cells from chicken ovarian follicles. Reprod Toxicol. 2011;31:477-85. https://doi.org/10.1016/j.reprotox.2010.12.057

Moretti E, Mazzi L, Terzuoli G, Bonechi C, Iacoponi F, Martini S, et al. Effect of quercetin, rutin, naringenin and epicatechin on lipid peroxidation induced in human sperm. Reprod Toxicol. 2012;34:651-7. https://doi.org/10.1016/j.reprotox.2012.10.002

Ranawat P, Pathak CM, Khanduja KL. A new perspective on the quercetin paradox in male reproductive dysfunction. Phytother Res. 2013;27:802-10. https://doi.org/10.1002/ptr.4799

Liu CM, Ma JQ, Xie WR, Liu SS, Feng ZJ, Zheng GH, et al. Quercetin protects mouse liver against nickel-induced DNA methylation and inflammation associated with the Nrf2/HO-1 and p38/STAT1/NF-κB pathway. Food Chem Toxicol. 2015;82:19-26. https://doi.org/10.1016/j.fct.2015.05.001

Qiu W, Lin J, Zhu Y, Zhang J, Zeng L, Su M, et al. Kaempferol modulates DNA methylation and downregulates DNMT3B in bladder cancer. Cell Physiol Biochem. 2017;41:1325-35. https://doi.org/10.1159/000464435

Imran M, Rauf A, Shah ZA, Saeed F, Imran A, Arshad MU, et al. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review. Phytother Res. 2019;33:263-75. https://doi.org/10.1002/ptr.6227

Zhang C, Su ZY, Khor TO, Shu L, Kong AN. Sulforaphane enhances Nrf2 expression in prostate cancer TRAMP C1 cells through epigenetic regulation. Biochem Pharmacol. 2013;85:1398-404. https://doi.org/10.1016/j.bcp.2013.02.010

Yang SH, Long M, Yu LH, Li L, Li P, et al. Sulforaphane prevents testicular damage in Kunming mice exposed to cadmium via activation of Nrf2/ARE signaling pathways. Int J Mol Sci. 2016;17:1703. https://doi.org/10.3390/ijms17101703

Alkharashi NA, Periasamy VS, Athinarayanan J, Alshatwi AA. Assessment of sulforaphaneinduced protective mechanisms against cadmium toxicity in human mesenchymal stem cells. Environ Sci Pollut Res. 2018;25:10080-9. https://doi.org/10.1007/s11356-018-1228-7

Liang J, Hänsch GM, Hübner K, Samstag Y. Sulforaphane as anticancer agent: A doubleedged sword? Tricky balance between effects on tumor cells and immune cells. Adv Biol Regul. 2019;71:79-87. https://doi.org/10.1016/j.jbior.2018.11.006

Cómo citar
1.
Jazayeri O, Farahmand Araghi S, Aghajanzadeh TA, Mir Moammadrezaei F. La regulación positiva de la expresión del gen Arl4a por acción del extracto acuoso de brócoli se asocia con una mejor espermatogénesis en testículos de ratón. biomedica [Internet]. 15 de diciembre de 2021 [citado 18 de abril de 2024];41(4):706-20. Disponible en: https://revistabiomedica.org/index.php/biomedica/article/view/5962
Publicado
2021-12-15
Sección
Artículos originales

Métricas

Datos de los fondos

Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas
QR Code